
J Math Chem (2014) 52:313–354
DOI 10.1007/s10910-013-0266-0

ORIGINAL PAPER

Symmetries and fuzzy symmetries of Carbon nanotubes

Xuezhuang Zhao · Jianxia Cui · Zucheng Li ·
Zhenfeng Shang · Xiufang Xu · Shengkai Xing ·
Guichang Wang · Ruifang Li

Received: 21 June 2013 / Accepted: 28 September 2013 / Published online: 23 October 2013
© Springer Science+Business Media New York 2013

Abstract Carbon nanotubes (CNTs) possess the fuzzy cylinder group characteristic.
Comparing with the linear and planer molecules, there are included the fuzzy symmetry
of the cylinder screw rotation (CSR) in relation to some higher (>2) fold rotation axis.
The CSR may be noted as the product of translation (T) and rotation (C). The CSR
symmetry will be imperfect owing to the introduction of T. As the extent of whole
translation is more than 10-fold than every time, the membership function of CNT
in relation to CSR will be more than about 0.9, and such CNT may be seems as
provided with the perfect CSR symmetry. For analyse the CNT we may using the
cylindrical orthogonal curvilinear coordinate system. The MO ought to be provided
with a pure irreducible representation, but the component of symmetry adapted atomic
orbital (SA-AO) set may be not sole, and it is difficult to get and analyse the ‘pure’
π-MO. There are some various AO (1S-, 2S-, 2Pz-, 2Pr-, 2Pt of carbon and 1S- for
hydrogen)-set components in a certain MO. For the CNT with the same diameter
and different length, the MO energy and the SA-AO component versus the relative
serial number will be with the similar distribution. The MOs of CNT with higher
fold C symmetry may be provided with two-dimensional irreducible representation.
For the molecular skeleton and the MO which belong to one-dimensional irreduable
representation, their membership functions in relation to the CSR with the product of
the same T and different C would be equality. However, for the single MO which belong
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to two-dimensional irreducible representation that may be somewhat difference. The
torus carbon nanotube (TCNT) may be provided the symmetry with the torus group
and torus screw rotation (TSR), such symmetry would be or near be not rare in nature.
Similar as the planer rectangle (called as the MH rectangle) may composed the Hückel-
or Möbius-strip band, the more MH rectangles in the cylinder CNT may be composed
the more Hückel- or Möbius-strip bands, such strip bands set may be called strip tube,
meanwhile the fuzzy CSR symmetry will be transform to the perfect TSR symmetry.
The intersecting line (Z-axis) of the MH rectangles will be transform to the common
basic circle of these strip bands. When the CNT to form a TCNT, as one of the MH
rectangle form a Hückel-strip band or an n(t)-twisted Möbius-strip band itself, the
other MH rectangle will be form the strip band with the same topological structure
synchronously, and the set of these strip bands may be called the strip tube. The
boundary closed curves of the strip band may reflect the torus group symmetrical
characteristic of the relative strip bands. The closed curve may correspond to a cyclical
group or subgroup. The number of carbon atomic pairs on the closed curve denoted
the order of such group or subgroup. As the CNT to form the TCNT, it is different as
the single MH rectangle, they may be to form the fractal-twisted Möbius-strip tube
synchronously, in which the single Möbius-strip band may be formed from more one
MH rectangle, however, single MH rectangle may enter into only one Möbius-strip
band. As the hetero-CNT with the helical-structure distribution, such hetero-CNT
may form the relative torus hetero-CNT, but according to the continuity of CNT tube
side, a certain twisted to form Möbius-strip tube may often be required. There is
some interaction between the distributional helical-structure and twisting way, such
interaction may touch to the degree of tightness of the helical-structure distribution in
torus hetero-CNT.

Keywords The cylinder and torus carbon nanotube (CNT and TCNT) · Cylinder
screw rotation (CSR)and the torus screw rotation (TSR) · Symmetry and fuzzy
symmetry · Hückel- and Möbius-strip tube · Multi- and fractal-twisted Möbius-strip
tube

1 Introduction

Carbon nanotubes (CNT) is discovered by the Japanese physicist Iijima of NEC lab,
Tsukuba in 1991, by using the higher resolution transmission electron microscope [1].
CNT is formed by folding the multilayer homocentric graphite, may be called multi-
walled carbon nanotube. And then, in 1993, Iijima et al. discover the single-walled
carbon nanotube (SWCNT) [2]. Owing to the novel structure and the special physical
and chemical property of CNT, there is very interesting for extended researchers. About
the structure, the CNT is a tubular molecule of carbon, connected each other through
the hybrid σ bonding to form the cellular skeleton, and the conjugate π-electron cloud
through the whole carbon nanotube. In nature, the CNT possess the fine electrical
conductivity and higher mechanical strength [3]. In the fields of materials chemistry,
store hydrogen and theoretical chemistry, there are a lot of theses and review being
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reported [4–25]. However, we are more interesting in the characteristic of geometric
structure, symmetry and fuzzy symmetry.

As regards the relationship between the structure and the symmetry of carbon nan-
otube (CNT), there are some research reports on CNT by means of the symmetry group
theory. For the cylinder carbon nanotube there are some more studies. It is indicated
that there is intimate relationship between symmetry of CNT and both their Raman
and IR spectrum [26–29]. The point group which the finitude achiral zigzag and arm-
chair single-walled CNT belong to ought to be the point group DNh or DNd, where
N denoted the highest fold of the relative rotation axis [30,31]. Considering with
the fuzzy symmetry, such molecules will be provided with the fuzzy cylinder group
(or set) symmetry. These molecules may be provided with the fuzzy space symme-
try transformation: one-dimensional period translation and relative screw rotation and
glide reflection. We had probe some fuzzy cylindrical group and layer group symmetry
molecules [32–36], but they usual are linear or plane, the relative screw rotation will
be not higher than twofold. However, the higher fold screw rotation symmetry may be
important for some molecular system (e.g. DNA), we ought to analyse them. As for
the torus carbon nanotube (TCNT), after entering the new millennium, there are some
more attention of men [37–44]. Although these papers refer to molecular design and
some other theoretical side, considering the relationship between the special symmet-
rical characteristic (refer to the torus group symmetry [45,46]) and some important
molecular characteristic (e.g. The DNA topology), in this paper we will make some
analyse on such symmetry of TCNT provide for future further research.

2 Cylinder carbon nanotuble

Now we discuss the ordinary straight cylinder single-walled carbon nanotube
(SWCNT), such SWCNT may be seen as the graphene can be curled to form a cylinder
and the hydrogen atoms are omitted as condensation and bonding the adjacent carbon
atoms. The Fig. 1a denote the graphene molecule, for concise the hydrogen atoms are
omitted, where the carbon atoms may get the serial numbers according to the m- and
n-directions and a certain carbon atom may be denoted as C(m, n), in which the value
ranges of m and n are [1, M] and [1, N], respectively. In this figure, the M and N are
respective 17 and 8. As the carbon atoms C(1, n) and C(M, n) in left- and right-side
with the same serial number n are overlap and cohere to form the zigzag single-walled
carbon nanotube (ZSWCNT) it is shown in Fig. 1b, and the carbon atoms C(m, 1)
and C(m, N) in up- and down-side with the same serial number m bonding to form
the armchair single-walled carbon nanotube (ASWCNT) it is shown in Fig. 1c. As
above-mentioned carbon atoms are some mismatched (the serial number m or n may
be differ with a certain value) it will be formed the chiral SWCNT. But we will not
analyse such SWCNT in this paper.

As shown in Fig. 1, the carbon atoms in same row with the identical n are linked
together with the oblique bonds, and the carbons in same column with the identi-
cal m are linked together with the non-oblique bonds, ZSWCNT with the vertical
bonds and ASWCNT with horizontal bonds. It will be affect some fuzzy symmetric
characteristics of such two kinds of SWCNT.

123



316 J Math Chem (2014) 52:313–354

m

n

1

2
3

4
5

6
7

8

2

4

3

5

6

8

7

9 11
12

13
10 14

15
16

17

(a)

(c)

(b)

Fig. 1 The graphene molecule (a) curl to form the Zigzag carbon nanotube (ZSWCNT) (b) and Armchair
carbon nanotube (ASWCNT) (c)

2.1 Symmetry and fuzzy symmetry of SWCNT molecular skeleton

Along to the central axis of SWCNT, there often is an r-fold rotation axis Cr, there is
usual set as the Z-direction, and by using the cylinder curvilinear coordinate system
to analyse. The ZSWCNT shown in Fig. 1b, its r=8= (M−1)/2, there is an eightfold
rotation axis C8. The molecule shown in Fig. 1b will be provided with the symmetry
of point group Drh, where N must be the even number. Otherwise as N is odd number
it will be provided with the symmetry of point group Drd. The Dr is the intersection set
and common subgroup of Drh and Drd, meanwhile both Drd and Drh are the subgroup
of their union set D2rh. That is to say:

Dr ⊂ Drd, Dr ⊂ Drh, Dr = Drd ∩ Drh. (1a)

Drd ⊂ D2rh, Drh ⊂ D2rh, D2rh = Drd ∪ Drh. (1b)

Similar as the way in which we analyse the inner rotation process [47], the element
(symmetry transformation) in the D2rh may be classified to four subset: G0, G1, G2
and G3. Where the G0 are the elements included in both Drh and Drd, simultaneously,
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that is the intersection set subgroup Dr. In relation to G0 for the ZSWCNT with the
Drh or Drd symmetry the relative membership function usually equals one. As for G1
there are the elements included only in Drh, but not in Drd, for the ZSWCNT with
the Drh symmetry (even number N) the relative membership function equals one but
less one with the Drd (odd number N) and may analyse their fuzzy symmetry only. As
for G2 there are the elements included only in Drd, but not in Drh, for the ZSWCNT
with the Drd symmetry (odd number N) the relative membership function equals one
but less one with the Drh (even number N) and may analyse their fuzzy symmetry
only. However, for G3 there are the elements not included in neither Drd nor Drh, for
the ZSWCNT with the Drh or Drd symmetry (whether the odevity of N) the relative
membership function less one and may analyse their fuzzy symmetry only.

As regards the fuzzy space symmetry, the SWCNT may be considered as the fuzzy
cylinder group system. The relative symmetry transformation, it will be considered the
cylinder screw rotation (CSR) mainly, in especial the higher (>2)-fold CSR. The CSR
may be called screw rotation, in brief. The CSR may be considered as the combination
of translation and rotation. As the space separation distance of translation will be null,
the CSR will be the simple rotation, on the other hand, as the rotation angle equals
zero, the CSR will be the simple translation. As shown in Fig. 1b the ZSWCNT
(molecular length sufficient), the translation along the CNT centre axis, the period
length ought to be the three times of the CC bond length (3lcc). there are 2(M−1)
carbon atoms [C(m, n), where n may be defined as two sequential number and m =
1, 2, . . .. . ., M − 1; note: the C(1, n) and C(M, n) are denoted the identical carbon
atom], which are constituted by the 2 (M−1) carbon atoms in two border row of
Fig. 1a. It is noteworthy that the translate length included in CSR may be the integral
multiple 1.5lcc. On the other hand, the minimum variation angle of rotation may be
2 π /r = 4 π /(M − 1), but the rotation angle include in CSR may be the integral
multiple 2 π /(M − 1). Then the CSR ought to be the combination (product) of above
translation Tn(1.5 jlcc) and rotation Cn(2 π i/[M − 1]), where both i and j will be the
integral number. For the relative CSR symmetry transformation of the ZSWCNT as
shown in Fig. 1b, the i and j ought to be the same odevity, otherwise the relative CSR
transformation would not be symmetry one. The transformation (the subscript n for T
and C are omitted):

CSR( j, i) = T (1.5 jlcc) C (2 π i/ [M − 1]) = C (2 π i/ [M − 1]) T (1.5 jlcc) . (2)

In which there must be the same odevity of i and j . As the ZSWCNT molecule is
finite, for the CSR transformation (2) with the same odevity of the i and j , the fuzzy
symmetry of such molecular skeleton may be analysed. The membership function in
relation to a certain symmetry transformation G would be [48]:

μ (G) =
[∑

m,n

(Y (m, n) ∧ Y (gm, gn))

] / [∑
m,n

(Y (m, n))

]
, (3)

where the atom with the serial number (m, n) will be transformed to with the (gm, gn)
through G. The atomic criteria before and after the transformation G are Y (m, n) and
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Y (gm, gn), respectively. For the molecular skeleton, their value may be the relative
atomic number. For the ZSWCNT as shown in Fig. 1b, there are NC = N(M − 1)

carbon atoms and NH = (M − 1) hydrogen atoms included in, the molecular formula
would be the CN(M−1)H(M−1). The denominator in Eq. (3) will be the N(M − 1)ZC +
(M − 1)ZH = (M − 1)(NZC + ZH), where the ZC and ZH are the atomic numbers (6
and 1) of carbon and hydrogen, respectively. Considering the membership function in
relation to CSR transformation, to start with we examine the simple translation alone
the CNT center axis (the Z-direction), that is the i in Eq. (2) ought to be zero, and then
the j must be the even number for CSR symmetry transformation. It is easy to get
the numerator in Eq. (3) ought to be (M − 1)[(N − j)ZC + ZH] and the membership
function in relation to the translation T(1.5 jlcc) with the even number j would be the
[(N − j)ZC + ZH]/[NZC + ZH]. For the rotation C(2 π i /[M − 1]) there is a perfect
symmetry transformation with the membership function equal to one. It is easy to
prove that in relation to the CSR(i, j) symmetry transformation with the even number
j , the membership function of ZSWCNT skeleton:

μZ (CSR ( j, i)) = [(N − j) ZC + ZH] / [NZC + ZH] , (4)

where the subscript Z follow the μ denoted the ZSWCNT. It is independent on i , yet.
As for the odd number j , the i must be also odd and the Eq. (4) will be still right. As we
ignore deviation from the ZH, above Eq. (4) may be come down to 1 − ( j /N). As the
translation range allowed (in connection with N) will be more 10 times of the length
for each one translation (in connection with j), the relative membership function will
be more than 0.9, the fuzzy space group symmetry may be considered as near perfect.
That is agreed as our previous results [32–34].

The ASWCNT (e.g. as shown in Fig. 1c), there is only four (r=N/2)-fold rotation
axis Cr. It is notable that where the Z-axis direction will be m-axis direction which
orthotropic to that of ZSWCNT. Such molecule ought to be provided with the point
group Drh symmetry, where M is odd number, as M is even number it would be with the
point group Drd symmetry. Therefore we may analyse the relative symmetry and fuzzy
symmetry for the ASWCNT similar as for the ZSWCNT. For the ASWCNT the fuzzy
symmetry in relation to CSR transformation, there are some special features differ
with that for ZSWCNT. For ASWCNT, alone the Z (m-axis)-direction translation one
periodic distance is agreement 2 sin 60◦lCC = 31/2lCC, near for ZSWCNT, alone the
Z (n-axis)-direction translation half periodic distance. Included in CSR, the translation
length will be the integral multiple of sin 60◦lCC, and the rotation angle will be the
integral multiple of 2 π /r = 4 π /N. The CSR transformation would be the product of
translation Tm(sin 60◦ jlcc) and rotation Cm(2 π i/N). Where both i and j are integer
and their odevity are the same. Therefore, the CSR transformation (the subscript m
for T and C are omitted):

CSR ( j, i) = T
(
sin 60◦ jlcc

)
C(2 π i/N) = C(2 π i/N)T

(
sin 60◦ jlcc

)
. (5)

It is noted that the omitted subscript for T and C are different as Eq. (2). For the
ASWCNT with finite length and CSR (5) with same odevity of i and j , we may analyse
the relative fuzzy symmetry and get the relative membership function by using the
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Eq. (3). For the ASWCNT shown in Fig. 1c, there are NC = MN carbon atoms and
NH = 2N hydrogen atoms included with the formula CMNH2N. The denominator and
numerator in Eq. (3) are MNZC +2NZH = N(MZC +2ZH) and N[(M− j)ZC +2ZH],
respectively. The relative membership function would be:

μA (CSR ( j, i)) = [(M − j) ZC + ZH] / [MZC + ZH] , (6)

where the subscript A follow the μ is denoted the ASWCNT. As we ignore deviation
from the ZH, above Eq. (6) may be come down to 1 − ( j /M). As the translation range
allowed (in connection with M) will be more 10 times of the length for each one
translation (in connection with j), the relative membership function will be more than
0.9, the fuzzy space group symmetry may be considered as near perfect. That is similar
as the ZSWCNT.

Now we consider hetero-ZSWCNT, in which some certain carbon atoms of ZSW-
CNT are substituted by hetero-atoms according to the helical-structure distribution.
In Fig. 1a, the carbon atoms with the serial number (2, 1), (3, 2), (4, 3), (5, 4). . .. . .

are replaced by X atoms meanwhile the carbon atoms with the serial number with
(3, 1), (4, 2), (5, 3), (6, 4). . .. . . replaced by Y atoms, as shown in Fig. 2a. The hetero-
graphene in Fig. 2a curl to form the hetero-ZSWCNT, the substitutive hetero-atom are
distributed in the CNT wall according to the helical-structure form. As the paper
towards the back the hetero-atoms are the left-hand helical-structure distribution
(Fig. 2b), however as the paper forward they are the right-handed helical-structure
distribution (Fig. 2c). There is a pair of optical enantiomer.

The CSR transformation (2) include the translation Tn(1.5 jlcc) and the rotation
Cn(2 π i/[M − 1]) with the same odevity of i and j . The ZSWCNT in relation to
the pure rotation Cn(2 π i/[M − 1]) (with j = 0 and i = even number) ought to
be provided the perfect symmetry and the relative membership function would be
one. The hetero-ZSWCNT shown in Fig. 2b, c which include NC = N(M − 1) − 2N
carbon atoms and NH = M − 1 hydrogen atoms, the numbers of both X and Y atoms
are N = NX = NY, the relative formula would be CN(M−1)−2NXNYNHM−1. Their
membership function in relation to pure rotation would be less one. As j = 0 and
i = 2, the membership functions of these two enantiomers:

1 > μZ,l (CSR (0, 2)) = μZ,d (CSR (0, 2)) > 0. (7)

Both are less one and the values of μZ ,l and μZ ,d equality. However, as the CSR
included the translation, they may be unequality. For example, as the i = j = 1, the
relative membership function:

1 > μZ,l (CSR (1, 1)) > μZ,d (CSR (1, 1)) > 0. (8)

Owing to according to CSR(1, 1) transformation, some of hetero-atoms in the hetero-
CNT with l-distribution will be transform to the positions of other same hetero-atoms,
but without such condition for the hetero-CNT with d-distribution.

By the way, the relative fuzzy symmetry of such hetero-CNT may be used to analyse
the biologic molecule, we will do it in near future.
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(a)

(b) (c)

Fig. 2 The hetero-atom graphene (a) curl backward to form the hetero-ZSWCNT (b) with the left handed
helical structure distribution and curl forward to form the hetero-ZSWCNT (c) with the right-handed helical-
structure distribution
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2.2 Symmetry and fuzzy symmetry of SWCNT molecular orbital

As a molecular skeleton is provided with a certain point group symmetry, the relative
molecular orbital (MO) ought to belong a certain irreducible representation of such
point group. In this paper we calculate the MOs of some SWCNT at STO-3G/HF
level using the Gaussian [49]. Above SWCNT skeleton ought to be the cylinder group
symmetry structure and using the cylinder orthogonal curvilinear coordinate system
to analyse them more suitable as for the Hückel-cyclacene [45,46]. The Z-axis as
same as the central axis of the SWCNT, the (r-, α-) or (X-,Y-) coordinate plane would
be through the SWCNT center and orthogonal with the Z-axis. In fact, the Hückel-
cyclacene may be consider as the ZSWCNT in Fig. 1b with N=2.

2.2.1 Energy and symmetry characteristic of SWCNT molecular orbital

As the molecular skeleton is provided with the Drh point group symmetry, the relative
MO may belong to the irreducible representation:

A1g, A2g, B1g, B2g, A1u, A2u, B1u, B2u, E1g, E2g, . . . . . . (r:even)

E[(r/2)−1]g, E1u, E2u, . . . . . . E[(r/2)−1]u,

or

A′
1, A′

2, A′′
1, A′′

2, E′
1, E′

2, . . . . . . E′[(r−1)/2], E′′
1, E′′

2, . . . . . . E′′[(r−1)/2]. (r:odd)

As the molecular skeleton is provided with the Drd point group symmetry, the
relative MO may belong to the irreducible representation:

A1, A2, B1, B2, E1, E2, . . . . . . E(r−1), (r:even)

or

A1g, A2g, A1u, A2u, E1g, E2g, . . . . . . E[(r−1)/2]g, E1u, E2u, . . . . . . E[(r−1)/2]u.

(r:odd)

On the other hand, we may divide the atoms and AOs of SWCNT into some atom-set
and AO-set. The atom-set may be hydrogen atom-set and carbon atom-set. As for the
AO-set, there is only one 1s-AO-set for hydrogen atoms we consider, and five AO-sets
for carbon atoms. For carbon atoms, the five AO-sets are the 1s-, 2s-, 2pz-, 2pr- and
2pt-AO-sets, where by means of the cylindrical orthogonal curvilinear coordinates
(z, r, α) system, therefore for the 2p-AOs the 2pZ-, 2pY- and 2pX- are replaced by
2pz-, 2pr- and 2pt [45,46]. Various AO-sets may compose the SALC-AO-sets with
the same irreducible representation, and they may form together the MO further more.
Therefore though the MO is provided with a certain pure irreducible representation,
but it may be included various SA-AO set component. Consequently, we may get the
s-, pz-, pr- and pt-AO set component included in each MO in SWCNT, by means the
handling way as for Hückel-cyclacene [45,46].
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For the graphene, the π-MO would be constituted by the p-AO set composed from
the molecular plane perpendicular direction. Such p-AO set belong to the irreducible
representation different diversed that from other AO-set of graphene, therefore irre-
ducible representation which the π-MO of graphene belong to would be pure mean-
while the relative composed AO-set will be ‘pure’ too. However, the π-MO of SWCNT
are formed by the p-AO set which vertical the cylinder surface and such p-AO may
be provided with some irreducible representations which may exist in other AO-sets,
therefore though the irreducible representation of a certain π-MO is pure, but the com-
ponent of AO-set may be not only. Then there is difficult to isolate and get the ‘pure’
π-MO for analyse but we can analyse the virous AO-set components of a certain MO.
As for the MO serial number J of the SWCNT, we usual set the J=0 for non-bonding
orbital (NBMO) energy level, J < 0 for bonding and J>0 for anti-bonding ones. The
absolute values of J from small to enlarge, are defined by the energy interval serial
order between the MOs and NBMO. For comparing the characteristic of various sized
SWCNT, the relative serial number J/Nc will be introduced sometimes, where Nc
denoted the number of carbon and hetero-atoms of the CNT wall.

For the MO energy of SWCNT, to start with, we consider four ZSWCNT with the
point group D6h symmetry: Z-C48H12, Z-C72H12, Z-C96H12 and Z-C144H12, where
the Z- denoted the zigzag, and which are follow with the relative formula. These CNTs
are corresponding to the M − 1 = 12 and N=4, 6, 8 and 12, respectively in Fig. 1.
There are four ZSWCNT molecules with the same pipe diameter (degree of thickness)
but virous of length. There are the figures of above four ZSWCNT in relation to the
MO energy, E(MO), versus MO serial number J, as shown in Fig. 3a–d, respectively.
According to the point group D6h, there are eight irreducible representations may
be belonged with these MO, and they will be denoted with various symbol in these
figures. It is seems that the relationship of E(MO) versus J would be similar for these
ZSWCNT in whole. As we combinate them to form Fig. 3e, such similarity will be more
obviously. Using the J/Nc(relative serial number) to replace the J, the relative curves
will overlap roughly, as shown in Fig. 3f. There is evident energy gap in J/Nc=0.5,
but it is not much clear in J/Nc=0.

Now we examine three molecules in relation to ZSWCNT but with the symmetry
other than point group D6h : Z-C84H12, Z-C144H24and Z-C80B8N8H12. Where the
Z-C84H12 is provided the point group D6d symmetry with M−1 = 12 and N = 7, the
Z-C144H24 is provided the point group D12h symmetry with M − 1 = 24 and N = 6,
as for the Z-C80B8N8H12, there are some carbon atoms of ZSWCNT are substituted
by B- or N-atoms as shown the X- and Y- in Fig. 2 to form the hetero-ZSWCNT in
which the M − 1 = 12 and N = 8 but without the point group D6h symmetry. Owing
to these molecules are provided with various point group symmetry, the irreducible
representations which their MOs belong to would be differ to that of point group D6h.
the relative results of these molecule E(MO) are shown in Fig. 4. Comparing with
the curve in relation to Z-C84H12 in Fig. 4a, it is between the curves in relation to
Z-C72H12 and Z-C96H12 in Fig. 3e. As the horizontal ordinate J is replaced by J/Nc,
the curve in relation to Z-C84H12 will be near the relative curve in Fig. 3f. As for
the Z-C144H12 and Z-C144H24, these two ZSWCNTs with same number of carbon
atoms but various thickness, their relative curves somewhat similar but with obvious
different the energy gap in J/Nc=0.5 is much less for Z-C144H24. As for the curves of
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Fig. 3 The MO energy for four ZSWCNT with the same thickness. (a) Z-C48H12, (b) Z-C72H12,
(c) Z-C96H12, (d) Z-C144H12, (e) E(MO) versus J, (f) E(MO) versus J/Nc

Z-C80B8N8H12 and relative un-substituted CNT, Z-C96H12 are closed, but for some
more inner MOs (J < −198 and E(MO) < −5) will be some evident difference.

Now we examine six ASWCNT molecules: A-C48H12, A-C66H12, A-C72H12,

A-C78H12, A-C96H12 and A-C144H12, where the A- denoted the armchair, and which
are follow with the relative formula. For above ASWCNT the A-C66H12 and A-C78H12
are possess the point group D3h symmetry, and other are possess the point group D3d
symmetry. Corresponding to Fig. 1, these ASWCNT would be the N=6, M=8, 11,
12, 13, 16 and 24. These ASWCNT are provided with the same pipe diameter but
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Fig. 4 The MO energy of three ZSWCNT molecules. (a) E(MO) versus serial number (J), (b) E(MO)
versus relative serial number (J/Nc)
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Fig. 5 The MO energy of six ASWCNT. (a) E(MO) versus serial number (J), (b) E(MO) versus relative
serial number (J/Nc)

different length. The MO energy of these six ASWCNT versus serial number (J) and
relative serial number (J/Nc) are shown in Fig. 5a, b, respectively. They are similar
as of the ZSWCNT. The different for these two kinds of CNT there is the energy
gap of ASWCNT is more obvious. It means that maybe there are more resistance and
hardness for ASWCNT.

2.2.2 Various AO-set component of SWCNT MO

For AO-sets in relative SWCNT MO by using the cylindrical coordinate sys-
tem [45,46] and at the HF/STO-3G level, we may divided as the 1S-, 2S-, 2Pz-,
2Pr- and 2Pt-AO set of carbon atoms and 1S-AO set of hydrogen atoms. Mean-
while we may get the various AO-set components of a certain MO and denoted as:
X(C1S), X(C2S), X(C2Pz), X(C2Pr). X(C2Pt) and X(H1S), respectively. Roughly, the
X(C1S) will compose the un-bonding the inner AO. The X(C2S), X(C2Pz) and X(C2Pt)

will be process the sp2-hybrid, then to form the σ-MO but the X(C2Pr) to form the
π-MO. However, it is differ from the graphene [36], for the SWCNT, the AO set in
relation to X(C2Pr), i.e. the C2Pr-AO set may be belong to some irreducible representa-
tion which can also belong other AO sets, too. Therefore the MO may include but not
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Fig. 6 The AO-set components versus J polt for three various ZSWCNT

only include the C2Pr-AO set component X(C2Pr) to form the MO with π-component
as the principle but not pure π-one. Meanwhile some other MO may with σ-component
as the principle but not pure σ-one may include some X(C2Pr) component. By means
of the way as Hückel-cyclacene [45,46] we may get the various AO-set components
of SWCNT all MOs in relation to cylindrical coordinate.

To start with, we consider three kinds of ZSWCNT molecules: Z-C48H12, Z-C96H12
and Z-C144H12. All of them are provided with the symmetry of D6h, in Fig. 1, the
relative values M will be 13, but the values N will be the 4, 8 and 12, respectively.
For above ZSWCNT, the AO-set components X(AO) of all MO versus the MO serial
number (J) are shown in Fig. 6. It is clear that there is a certain similarity for various
ZSWCNT. The abscissa region extend over all MO, the number of MOs ought to
be near direct ratio to the number (Nc) of atoms in CNT wall. Therefore it may be
expected that using the J/Nc to replace the J for abscissa will be more suitable to reflect
the MO substitutive characteristics.

For understanding the relative rule among various ZSWCNT, by means of the cylin-
drical coordinate system we may plot the figure for each carbon p-AO set component
as shown in Fig. 7, where the abscissa being the (J/Nc). In Fig. 7, there are additional
three ZSWCNT (Z-C72H12, Z-C84H12 and Z-C144H24 with the D6h, D6d and D12h
point group symmetry) and one hetero-CNT Z-C80B8N8H12 also to be considered.

As shown in Fig. 7, a certain AO-set component distributions for various ZSWCNT
MO are some similarity. For example, the AO-set components the near frontal orbital
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Fig. 7 The carbon p-AO set components versus J/Nc polt for some various ZSWCNT
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Fig. 8 The X(C2Pr) distribution in relation to the near frontal orbital of six ZSWCNTs

(J/Nc near but not equal to null) will be less except for X(C2Pr), certainly there are
also somewhat discrepant. As shown in Fig. 8, there are the X(C2Pr) distribution for
the near frontal orbital of some ZSWCNT. Except the Z-C144H24, for the other five
ZSWCNT with the roughly same diameter the X(C2pr) distribution are similar. As for

123



J Math Chem (2014) 52:313–354 327

0.0

0.2

0.4

0.6

0.8

1.0

 C1S

 C2S

 C2Pz

 C2Pr

 C2Pt

 H1S

X
(A

O
)

J
A-C48H12

-160 -120 -80 -40 0 40 80 120 -250 -200 -150 -100 -50 0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

 C1S

 C2S

 C2Pz

 C2Pr

 C2Pt

 H1S

X
(A

O
)

J
 A-C78H12

Fig. 9 The AO-set components versus J polt for two various ASWCNT

0 .0

0 .5

1 .0
 A -C 144H 12

 A -C 96H 12

 A -C 78H 12

 A -C 72H 12

 A -C 66H 12

 A -C 48H 12

X
(C

2P
z)

J /N C

X(C2Pz)

0 .0

0 .5

1 .0

 A -C 144H 12

 A -C 96H 12

 A -C 78H 12

 A -C 72H 12

 A -C 66H 1 2

 A -C 48H 12

X
(C

2P
r)

J /N C

X(C2Pr)

-2 -1 0 1 2 -2 -1 0 1 2

-2 -1 0 1 2

0 .0

0 .5

1 .0
 A -C 144H 12

 A -C 96H 12

 A -C 78H 12

 A -C 72H 12

 A -C 66H 1 2

 A -C 48H 12

X
(C

2P
t)

J /N C

X(C2Pt)

Fig. 10 The AO-set components versus J/Nc polt for various ASWCNT

the Z-C144H24, the relative X(C2Pr) will be larger (near one). It means the Z-C144H24
with more pipe diameter, their wall more near the graphene.

Now, we consider two ASWCNT molecules, A-C48H12 and A-C78H12. Both of
them are provided with relative value N in Fig. 1 will be 6. But the values M will be
the 8 and 13, respectively. On the other hand the A-C78H12 will be provided with the
D3h point group symmetry but A-C48H12 with D3d symmetry. Similar as the Fig. 6
for ZSWCNT, we may get Fig. 9.

Similar as Fig. 6, it may be expected as using the J/Nc to replace the abscissa J, the
plot may reflect the MO intrinsic characteristics more clear. Similar as Fig. 7, we can
obtain the Fig. 10. It is notable that the A-C66H12 and A-C78H12 ought to be provided
with D3h symmetry, and other ASWCNT with the D3d symmetry.
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Fig. 11 The X(C2Pr) distribution in relation to the near frontal orbital of six ASWCNTs

Comparing with the Figs. 6 and 7 of ZSWCNT and the Figs. 9 and 10 of ASWCNT,
in relation to the AO-set component distribution are similar, roughly. But there are
somewhat different characteristic, similarly, we can get the Fig. 11 for ASWCNT as
the Fig. 8 for ZSWCNT, it is apparent that there are more dispersion for ASWCNT in
the VMO region.

2.2.3 Fuzzy CSR symmetry of SWCNT MO

It is somewhat dissimilar from our previous work in relation to the fuzzy cylindrical
group symmetry molecule [32,33,35], where the SWCNT may involve the higher
(>2)-fold cylindrical screw rotation (CSR), and would probe the fuzzy symmetry
in relation to CSR. Where we only analyse some ZSWCNT MO as the example
(the ASWCNT will be omitted to save space). For the CSR( j, i) transformation of
ZSWCNT may be denoted as the product of single rotation Cn(2 π i/[M − 1]) and
translation Tn(1.5 jlcc). When and only when i and j are provided with the same
odevity, such CSR may be symmetry or fuzzy symmetry transformation.

For simple rotation, there is without the translation and then the j = 0, therefore i
must also be even. The Cn(2 π i/[M − 1]) with even number i , the membership func-
tion of ZSWCNT molecular skeleton for relative transformation usually equals one,
however for the ZSWCNT MO it will be more complex. The membership function in
relative transformation for the MO which belongs to one dimensional irreducible rep-
resentation will be also one. However, for the MO which belongs to two-dimensional
irreducible representation the relative membership function may be less one [50]. For
example, the benzene MO belongs to two-dimensional irreducible representation the
membership function in relation to C0

6 and C3
6 would be equal to one, but that in relation

to C1
6 and C2

6 may be to 0.5. Such results are the same for the calculation at various
levels. Above results are also right for the SWCNT with the C6 symmetry, such as the
SWCNT Z-C48H12, Z-C72H12, Z-C96H12 and Z-C144H12 that we analysed above. As
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Fig. 12 The membership function of some ZSWCNTs in relation to the CSR transformation versus J(MO)
serial number. (a) Z-C144H12 in relation to CSR(2, 0), (b) Z-C96H12 in relation to CSR(2, 0), (c) Z-C96H12
in relation to CSR(2, 2)

for the other fold rotation symmetry, the relative SWCNT, we may get the results as
the full carbon ring molecules [34]. For the MO which belongs to one dimensional
irreducible representation the relative membership function ought to be one. However,
for the single MO which belongs to two-dimensional irreducible representation, the
relative membership function may be less that one (not sure be 0.5).

As for the simple translation there is without the rotation and i = 0, therefore as
j is even the Tn(1.5 jlcc), there may be the relative symmetry or fuzzy symmetry, the
membership function will be more (near one). Although owing to the ZSWCNT is
finitude, the relative membership function less one but may be considerable value. As
j is odd number, the membership function in relation to Tn(1.5 jlcc) will be very small
approach null. For ZSWCNT MO in relation to the simple translation (i = 0, j is even),
by means of the fuzzy cylindrical group [32–35], we may get the relative membership
function. As shown in Fig. 12a, b, there are the membership functions YCSR(2, 0) in
relation to the simple translation CSR(2, 0) for the MO of Z-C144H12 and Z-C96H12
versus the serial number J, respectively. Although the numbers of MO of Z-C96H12
and Z-C144H12 are different, the point-distribution for Fig. 12a, b will be the similar,
roughly. The points with less J, ought to belong the MO composed by the inner 1s-AO
of the carbon in CNT wall. Owing to the translation region (N) in Z-C96H12 would be
less than that of Z-C144H12, the distribution region for vertical coordinates would be
narrower. In additional, for the MO with one-dimensional irreducible representation
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Fig. 13 The membership function YCSR of Z-C144H12 MO in relation to the CSR(2, 0) and CSR(2,
2) symmetry transformation versus the MO serial number (J). (a) MO with the A1g, A1u, A2g and A2u
irreducible representation. (b) MO with the B1g, B1u, B2g and B2u irreducible representation. (c) MO with
the E1g, E1u, E2g and E2u irreducible representation

the relative membership function will be the defined, for the MO with two-dimensional
irreducible representation will be defined for MO complete set but not for single MO,
it will depend on the complete set designate way. For the MO with the complete set in
various designate way, the membership functions in relative point group transformation
of single MO may be different [34,50]. In this paper we will analyse the MO which
belongs to the one dimensional irreducible representation, mainly.

Now we consider the CSR( j, i) where both i and j are nonzero, the plot of mem-
bership function YCSR( j, i) of Z-C144H12 in relation to the CSR(2, 2) transformation
versus J would be shown in Fig. 12c. Comparing with the pure translation CSR(2, 0)
as shown in Fig. 12a, it seems that there are some dots going down. As we divide the
MO into three sets according to the irreducible representation (A, B and E), we may
make the plot of the membership function in relation to the CSR(2, 0) and CSR(2, 2)
transformation versus J as shown in Fig. 13.

For the MO belong to the one-dimensional irreducible representation, the member-
ship function YCSR (2, 0) and YCSR (2, 2) versus J would coincide with each other,
elementary, as shown in Fig. 13a, b. For the MO belong to the two-dimensional irre-
ducible representation the relative YCSR(2, 0) would be bigger than that of YCSR(2, 2),
as shown in Fig. 13c. It is notable that the CSR(2, 2) is the product of CSR(2, 0) and
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Fig. 14 The plot for the membership function of the Z-C144H12 MO in relation to CSR(3, 1) and CSR(3,
3) transformation versus J (serial number). (a) Z-C144H12 MO, YCSR(3, 1) versus J. (b) Z-C144H12MO,
YCSR(3, 3) versus J. (c) Z-C144H12MO with A1g, A1u, A2g and A2u, YCSR(3,1) and (3, 3) versus J. (d)
Z-C144H12MO with E1g, E1u, E2g and E2u, YCSR(3,1) and (3, 3) versus J

CSR(0, 2), there are difference in a pure rotation transformation CSR(0, 2) i.e. the
factor C1

6, although the relative membership function YCSR(0, 2) is 0.5, but the ratio
of YCSR(2, 2)/YCSR(2, 0) may be between 0.5 and one.

For the cases of CSR(i, j) transformation with both i and j are odd, we examine
the membership function of Z-C144H12MO in relation to the CSR(3, 1) and CSR(3,
3) transformation membership function versus J, as shown in Fig. 14. Figure 14a,
b denote the membership function of Z-C144H12 MO in relation to YCSR(3, 1) and
YCSR(3, 3) transformation distribution. For the MO with one-dimensional irreducible
representation the plot of YCSR(3, 1) and YCSR(3, 3) versus J will be coincide each
other, essentially, for various A-irreducible representation as shown in Fig. 14c. As for
various B-irreducible representation, the relative membership function will be near null
(figure is omitted). As for the MO with the two-dimensional irreducible representation,
the relative YCSR(3, 1) and YCSR(3, 3) will be some difference as shown in Fig. 14d.

Now we consider the MO with A-irreducible representation as the instance in
detail, using the relative serial number J/Nc to replace the J, to analyse four ZSWCNT,
Z-C144H12, Z-C96H12, Z-C72H12 and Z-C48H12 with the same pipe diameter but dif-
ferent length, they are provided with the D6hpoint group symmetry. For the MO with
identical irreducible representation of above four ZSWCNT, the polt of YCSR(1,1)
versus J/Nc will be shown in one subgraph. As show in Fig. 15, the MO with the A1u
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Fig. 15 The membership function of Z-SWCNT MO A-irreducible representation in relation to the CSR(1,
1) symmetry transformation versus the relative serial number (J/Nc). (a) MO with the A1u irreducible
representation, YCSR(1, 1) versus J/Nc. (b) MO with the A2g irreducible representation, YCSR(1, 1) versus
J/Nc. (c) MO with the A1g irreducible representation, YCSR(1, 1) versus J/Nc. (d) MO with the A2u
irreducible representation, YCSR(1, 1) versus J/Nc

(Fig. 15a) and A2g (Fig. 15b) are similar they may overlap to form the distribution
rough near with two upward ringent curves, meanwhile the MO with A1g (Fig. 15c)
and with A2u (Fig. 15d) are similar they may overlap to form the distribution rough
near with more upward ringent curves. For the MO with B-irreducible representation,
they may be analysed similarly, but the relative membership function will be very
small. As for the MO with the two-dimensional E-irreducible representation, they
would be analysed by means of the complete set not single MO.

3 Torus carbon nanotuble

After entering the new millennium, the torus carbon nanotuble (TCNT) are notable by
more chemists [37–44]. It involves the molecular design and some other theoretical
side. Owing the special symmetrical characteristic (involve to the molecular torus
group symmetry [45,46]) and refer to some important molecular characteristic (e.g.
the topological characteristic of DNA) in connected with TCNT, we will analyse TCNT
in this paper. TCNT may be considered as the SWCNT curled along the Z-direction
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and connected with the two mouths of tube side. In this paper, we only discuss the
TCNT which will be formed from ZSWCNT and omitted from the ASWCNT. We
may consider a plane molecule place in a certain rectangle, as the two sides of this
rectangle may be overlying to form the Hückel or Möbius strip-like molecule [45,46].
Such rectangle may be called the MH-rectangle. The other two sides un-overlied of
the MH-rectangle will form the boundary of Hückel- or Möbius-strip band. Molecular
MH-rectangle boundary may be set in the position through more atoms in relative
molecule, often. There is more than one MH-rectangle in one SWCNT molecule.
Considering the ZSWCNT with the Drh point group symmetry, where all of the mirrors
(Md and Mv) except one (Mh) perpendicular to Z-axis may be the noted as the MH-
rectangle. The ZSWCNT with the M−1 = 12 and the D6h point group symmetry will
be provided with 3 Mv and 3 Md mirrors, therefore such ZSWCNT ought to include 6
MH-rectangles. The boundary of each MH-rectangle would be corresponding to the
position with certain m and m + 6 values. The MH-rectangle boundary from Mv and
Md include the carbon atoms with the similar distribution. However, as M − 1 = 10,
the relative ZSWCNT with the D5h point group symmetry will include 5 Mv mirrors
and 5 MH-rectangle. The boundary of each MH-rectangle would be corresponding
to the position with certain m and m + 5 values. Two boundary of each MH-rectangle
include the carbon atoms position would be the similar or some interlace.

As the SWCNT curl and form the TCNT, the Z-axis of SWCNT will be form the
basic circle of torus orthogonal curvilinear coordinates system [45,46]. The hydrogen
atoms in two sides of SWCNT no longer exist. The fuzzy CSR symmetry in SWCNT
will be transform to the prefect TSR symmetry.

Now we will analyse the various torus carbon nanotube include 360 carbon atoms
and formed from the ZSWCNT with M−1=12 and N=30 as the prototypes and
denoted as the TCNT360.

3.1 Symmetry and fuzzy symmetry of Hückel-TCNT360

Hückel-TCNT360 (denoted as the HTCNT360) means that such TCNT will be formed
from the relative ZSWCNT(z-C360H12) by means of condensation all the CH bonds
with the same even serial number in two side of TCNT, the relative molecular structure
as shown in Fig. 16. Figure 16a, b are denoted the top view, but with the ball and stick
graph and the space filling graph, respectively. Owing to the TCNT would be the pure
carbon molecule. Although the all atoms that are included in TCNT are carbon ones,
for convenient, the carbon atoms are being to the border of various MH-rectangle
boundary will be distinguished by using the various colour in Fig. 16b.

For the TCNT molecules, the torus orthogonal curvilinear coordinate system (L,
α, β) [45,46], may be used to analyse their geometrical characteristic suitably. Accord-
ing to the Fig. 16b, it seems that the carbon atoms in the boundary of identical MH-
rectangle may be form the Hückel-strip band including the basic circle and all of
these atoms would be provided with the same (or differ from π radian) β-coordinate
value. Their L-coordinate value may be considered as the constant CNT radius but the
α-coordinate value may be variation.
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Fig. 16 The HTCNT360 molecular structure (top view). (a) ball and stick graph and (b) space filling graph

According to Eq. (2), the fuzzy CSR symmetry transformation in relative z-C360H12
molecule would be T(1.5 jlcc)C(2 π i/12), now in relative HTCNT360 it will be trans-
lated to the perfect TSR transformation:

TSR (L,� α,� β) = TSR(L, 2 π j/30, 2 π i/12) = TSR
(
L, 12 jo, 30io)

= Cα(2 π j/30)Cβ(2 π i/12), (9)

where i and j would be the same odevity, Cα and Cβ denote the rotation in relation to
the α-and β-angle, respectively. That is the HTCNT360 would be provided with the
symmetry of the transformation group as follows:

TSRH ( j, i) = {TSR(L, 2 π j/30, 2 π i/12); i and j with the same odevity}. (10)

HTCNT360 will be provided the common point group D15h symmetry, i.e. the torus
group which the HTCNT360 belong to would include the subgroups: TSRH( j, i) as
shown in Eq. (10) and point group D15h. It is notable that there are 30 carbon atoms
respectively in the up and down boundaries of each Hückel-strip band, these atoms
are paring to be provided the 15-fold rotation axis, n(0) = 15.

Now we discussed some important cyclical subgroups of TSRH( j, i). By means of
torus orthogonal curvilinear coordinate system, for the carbon atoms of HTCNT360,
the L-coordinate values are elementary the same, the symmetry transformation in
relation to the α- and β-coordinate would be considered, mainly. To start with we
examine the transformation of the TSRH( j, i) with unchanged the MH-rectangle
which the atoms of TCNT belong to, these transformations are in relation to simple
α-angle rotation. Corresponding to Eq. (10), the i = 0 and j = even number, and
replaced with 2 j . This subgroup:

TSRH (2 j, 0) = {TSR(L, 2 π ∗2 j/30, 0); j = 0, 1, . . . . . . , 14}
= {[TSR(L, 2 π /15, 0)] j ; j = 0, 1, . . . . . . , 14}. (10a)
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As j = 15, the α-angle will rotate a circle, � α = 2 π. The element of TSRH(2 j, 0)

will be the TSR (L, 2 π, 0) and equivalent to the identity element. Such rotation sub-
group TSRH(2 j, 0) ought to be 15 order cyclical subgroup correspond to a usual rota-
tion group. The TSRH( j, i) would include the element inconnect with the pure β-angle
transformation, such transformation will change the MH-rectangle of the carbon atoms
being in TCNT. According to Eq. (10), j = 0 and i = even number (replaced by 2i).
The relative rotation subgroup TSRH(0, 2i) ought to be a 6-order cyclical subgroup:

TSRH (0, 2i) = {TSR(L, 0, 2 π ∗ 2i/12); i = 0, 1, . . . . . . , 5}
= {[TSR(L, 0,π /3)] j ; j = 0, 1, . . . . . . , 5}. (10b)

As i = 6, the relative element is TSR(L, 0, 2π) and equivalent to the identity element.
Such subgroup would be different from the usual rotation group, where the rotation is
not usual rotation in point group, it is not around the rotation axis but around the basic
circle circumference, through such rotation the α-angle remain unchanged. As regards
the cyclical subgroup of the TSRH( j, i) refer both the α- and β-angle changed:

TSRH ( j, j) = {TSR(L, 2 π j/30, 2 π j/12); j = 0, 1, . . . . . . , 59}
= {[TSR(L, 2 π /30, 2 π /12)] j ; j = 0, 1, . . . . . . , 59}. (10c)

It is noticed that this cyclical subgroup will be 60- not 30-order. As j = 30, the
group element is TSR(L, 2π,π), where � α = 2 π, α-angle rotate one circle, but
� β = 5 π, β-angle rotate two and half circles, and such element will be not equiv-
alence with the identity element. As j = 60, the group element is TSR(L, 4 π, 2 π),
where � α = 4 π, α-angle rotate two circles, � β = 10 π, β-angle rotate five circles,
such group element and identity element ought to be equivalence. Therefore there is
60-order cyclical subgroup. It seems that there are somewhat similar with the Möbius-
strip band, however the HTCNT is Hückel-TCNT indeed not the Möbius-TCNT. As
a certain carbon atom in HTCNT is transformed successive according the TSR(L,
2π /30, 2 π /12) transformation, this atom will be removed on HTCNT wall after 60
times then return to the original position, along the relative trajectory the α-angle
rotates two circles and β-angle rotate five circles.

When the polyacene to form the Hückel-cyclacene, the MH-rectangle will be trans-
form to a Hückel-strip band as a cylindric side [45,46]. As shown in Fig. 16b, accom-
plish the (z-C360H12) to constrict HTCNT360, the MH-rectangles will be transformed
to the Hückel-strip bands as the circular truncated cone sides, mainly, but in some
extreme cases as the cylindric side or concentric anchor ring plane. All these Hückel-
strip band curved surfaces ought to be the topologic homeomorphous and with the
corporate basic circle. As shown in Fig. 17a1–a3, there are the top view, side view
and oblique view graphs of circular truncated cone side form Hückel-strip bands in
HTCNT360, respectively, where two circles with different size are the boundary of
Hückel-strip band. The globules in the boundary of Hückel-strip band denoted the
carbon atom, and the red globules in middle-level may be linked to form the basic
circle. All the basic circles of six Hückel-strip bands in HTCNT360 are identical. In
the extreme case, the Hückel-strip band may be as the cylindric side (β = 90◦) or
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Fig. 17 The Hückel-strip band (annule) of HTCNT360. (a0–a3) circular truncated cone side form,
(b) cylindric side form (c) concentric anchor ring plane form

concentric anchor ring plane (coplane with basic circle, β = 0◦), the relative oblique
view graphs are shown in Fig. 17b, c, respectively. All of these Hückel-strip bands
will be provided with the boundary constituted by two closed curves which each run
through 30 carbon atoms. These carbon atoms are pairing of every two atoms and to
form the same structure unit, and there are 15 structure units included in every closed
curve. Where 15 structure units reflect the order of the in relation to α-angle rotation
symmetry transformation group, we may select one carbon atom from every structure
unit in proper sequence and to compose one symmetry adapted linear combinations
(SALC) atom set in relation to above rotation group. For each closed curve, there are
such two similar (only differ one equivalent α phase angle) SALC atom-set. For a
certain Hückel-strip band, above two closed curves will be differ with only one invari-
able β-phase angle (π). In additional, in Fig. 16b there are six Hückel-strip band, the
up- and down-boundary of same Hückel-strip band are shown with the same color,
however there are different color in Fig. 17. By the way, the globules in the boundary
of strip band denoted the carbon atoms, as using the SALC-carbon atoms to replace the
carbon atomic pairs in structural unit, the globules will be distributed more symmetry
simply. As shown in Fig. 17a0, it is similar as Fig. 17a1 for SCAL-carbon atom.
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Fig. 18 The MTCNT360 molecular structure (top view). (a) ball and stick graph and (b) space filling graph

3.2 Symmetry and fuzzy symmetry of Möbius-TCNT360

Möbius-TCNT360 (denoted as the MTCNT360) means that such TCNT will be formed
from the relative ZSWCNT(z-C360H12) by means of condensation all the CH bonds
with the even serial number m and m± (M−1)/2 (i.e. the para-position) in two side
of TCNT, the relative molecular structure as shown in Fig. 18. When the CNT is
curled to form the TCNT, sametime the CNT would be around the tube core 180◦(in
accordance with the torus orthogonal coordinate system the β-angle rotate 180◦). All
of the MH-rectangles in z-C360H12 ought to be made one time Möbius-twisted and
then butt joint. Similar as the Möbius-strip band molecule, such molecule may be
called the Möbius-strip tube molecule. Figure 18a, b are denoted the top view, but
with the ball and stick graph and the space filling graph, respectively. Owing to the
MTCNT360 would be the pure carbon molecule, the all atoms included in MTCNT360
are carbon ones, for convenient, the carbon atoms are being to the border and various
MH-rectangle boundary in primary ZSWCNT (z-C360H12) may be distinguished by
using the various colour. By means of the torus orthogonal curvilinear coordinate
system (L, α, β) [45,46], the MTCNT geometrical characteristic ought also to be
described suitable. According to the Fig. 18b, it seems that the carbon atoms in the
boundary of identical MH-rectangle may be form the Möbius-strip band including
the basic circle and all of these Möbius-strip bands same topology would be provided
with the same topologic structure as the usual Möbius-strip band [45,46]. The up-
and down-boundary of any one certain MH-rectangle will be combined to form a
continuous boundary closed curve, and the Möbius-strip band curved surface will be
connected to an interconnected surface.

The relative fuzzy CSR transformation of Z-C360H12, T(1.5 jlcc)C(2π i/12), would
be changed to the perfect TSR transformation:

TSR (L,� α,� β) = TSR(L, 2 π j/30, 2 π[i/12 + j/60])
= TSR(L, 12 jo, 30io + 6 jo)

= Cα (2 π j/30) Cβ(2 π[i/12 + j/60]), (11)
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where the i and j ought to be the same odevity, too. The Cα and Cβ will denote the
rotation in relation to the α- and β-angle, respectively. Comparing with Eq. (9), for the
Cβ transformation there is additional term to reflect the effect of the Möbius-twisted.
For the case of i = 0, as j = 30 i.e. the α-angle rotate one cycle (2π), the β-angle rotate
only half-cycle (π). So that the MTCNT360 ought to be provided with the symmetry
group using the Eq. (11) as the element:

TSRM ( j, i)={TSR(L, 2 π j/30, 2 π[i/12 + j/60]); i and jwith the same odevity}.
(12)

In relation to the MTCNT360, now we analyse some important cyclical subgroups
of the TSRM( j, i). The cyclical subgroup of TSRM( j, i) which includes the transfor-
mation only with the invariable MH-rectangle might be the TSRM(2 j, 0) as follows:

TSRM (2 j, 0) = {TSR(L, 4 π j/30, 4 π j/60); j = 0, 1, . . . . . . , 29}
= {[TSR(L, 2 π /15,π /15)] j ; j = 0, 1, . . . . . . , 29} (12a)

In such group, owing to there are the Möbius-twisted in MTCNT360, in rela-
tive the α-angle rotation would be not pure but meanwhile in relation the β-angle
rotation. It is not alike the subgroup TSRH(2 j, 0). The subgroup TSRM(2 j, 0) is
a 30-order cyclical subgroup. As j=15, the group element ought to be TSR(L,
� α,� β) = TSR(L , 2 π,π), along the α-angle rotate one-cycle but along the β-
angle rotate only half-cycle, such element would be not the identity one and (12a)
is not the 15-order cyclical subgroup. As j = 30, the group element TSR(L,
� α,� β) = TSR(L, 4 π, 2 π), along the α-angle rotate two cycles and along the β-
angle rotate one-cycle, such element would be equivalence to the identity one TSR(L,
0, 0) so the (12a) is the 30-order cyclical subgroup. The TSRM(2 j, 0) is not the rotation
group in usual point group. Based the transformation of TSRM(2 j, 0), in MTCNT360
the carbon atoms would not change the MH-rectangle they belong to. The TSRM( j, i)
could also include the rotation in relation to pure β-angle subgroup TSRM(0, 2i), there
is a six-order cyclical subgroup, with the formal as similar as the (10b), the transfor-
mation included in TSRM(0, 2i) may lead to the atoms in MTCNT360 to transfer
between various MH-rectangle. Such subgroup would be different from the usual
rotation group, where the rotation is not usual rotation in point group, it is not around
the rotation axis but around the basic circle circumference, through such rotation the
α-angle remain unchanged. As regards the cyclical subgroup of the TSRM( j, i) refer
both the α- and β-angle changed, as follows:

TSRM ( j, j) = {TSR(L, 2 π j/30, 2 π[ j/12 + j/60]); j = 0, 1, . . . . . . , 29}
= {[TSR(L, 2 π /30, 2 π[1/12 + 1/60]) j ; j = 0, 1, . . . . . . , 29}

(12b)

It is notable that, as j = 30, the element of TSRM( j, j) will be the TSR(L,2π, 6 π),
where � α = 2 π, α-angle rotate one circle, and � β = 6 π, β-angle rotate three
circles, it is equivalence the identity element. It means that the subgroup (12b) would
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Fig. 19 The Möbius-strip bands in MTCNT360. (a) Top view, (b) side view, (c) oblique view

be the 30-order cyclical group. The MTCNT360 molecule also provided with usual
point group C2 symmetry. The molecular torus group of MTCNT360 would include
the subgroup, the TSR group as shown in Eq. (11) and the point group C2. The
Fig. 18b shows that the various MH-rectangles in z-C360H12 would transform to the
Möbius-strip band [45,46] in MTCNT360. As shown in Fig. 19, where the up- and
down-boundary of the MH-rectangle will be linked to form one closed curve, the
boundary of such Möbius-strip band boundary are the same (homeomorphism) as that
of the cyclacenes [45,46]. There are six such Möbius-strip bands in MTCNT360, in
each boundary there are 60 carbon atoms respectively. All of these may be correlated
and transformed mutual by means of some certain symmetry operation. It is notable
where a certain MH-rectangle could and only could form one Möbius-strip band,
and a certain Möbius-strip band may be and only may be formed from a single MH-
rectangle. There are independent each other. As for the Fig. 19a0, it is corresponding
to the Fig. 19a but by using the SALC-carbon atoms to replace the carbon atomic pairs
in structural unit.

3.3 Symmetry and fuzzy symmetry of multi-twisted Möbius-TCNT360

Multi-n(t)-twisted Möbius-TCNT360 (denoted as the Mn(t) TCNT360) means that
such TCNT will be formed from the relative ZSWCNT(z-C360H12) by means of con-
densation all the CH bonds follow the n(t)-Möbius-twisted in two side of TCNT, where
n(t) is an integer. As n(t) = 0 and 1, the Mn(t) TCNT360 will be the HTCNT360
and MTCNT360, respectively. As n(t) will be the opposite numbers with the same
absolute value, the relative TCNT ought be the optical enantiomer each other. When the
ZSWCNT(z-C360H12) is curled to from the Mn(t)TCNT, the β-angle will be twisted

123



340 J Math Chem (2014) 52:313–354

Fig. 20 The space filling graphs of the Mn(t)TCNT360 molecular structure. (a) n(t) = 2, (b) n(t) = 3,
(c) n(t) = 4, (d) n(t) = 5, (e) n(t) = 6

the n(t)π (in accordance with the torus orthogonal coordinate system the β-angle
rotate n(t)π). All of the MH-rectangles in z-C360H12 ought to be made n(t) time
Möbius-twisted and then butt joint. Similar as the Möbius-strip band molecule, such
molecule may be called the Möbius-strip tube molecule. It is notable that the relative
ZSWCNT will be not provided with the optical activity. It means that the optical activ-
ity structure is not owing to the mismatch of α-angle but to the mismatch of β-angle.
In this paper we will analyse the case of n(t) > 0, mainly.

As shown in Fig. 20, there are the space filling graphs of Mn(t) TCNT360 molecular
structure with the n(t) = 2 to 6. The various color spherules denote the carbon atoms to
make a distinction between various MH-rectangle boundaries of relative Möbius-strip
band which these atoms belong to. As for the space filling graphs of the Mn(t)TCNT360
molecular structure with n(t) = −2 to −6, it is easy obtained from the mirror image
of Fig. 20, and they are omitted here.

For the geometrical characteristic of Mn(t)TCNT, it is also suitable to analyse using
the torus orthogonal curvilinear coordinate system (L, α, β) [45,46]. As shown in
figure, every such molecule would include six Möbius-strip bands and each Möbius-
strip band would be formed from identical MH-rectangle. All of the Möbius-strip bands
in a certain molecule include an identical basic circle. As the n(t) is odd number the up-
and down-boundary will be connected to form a continuous boundary closed curve,
but as n(t) is even number the up- and down-boundary will be to form the boundary
closed curves respectively (may be to form the catenane). Such boundary curves are
provided to the boundary curve as the same topologic structure of usual Möbius-strip
band boundary [45,46] with the same n(t) value.
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Corresponding to the fuzzy symmetry in relation to the CSR transformation of
z-C360H12. according by means of the Eq. (2), would be T(1.5 jlcc)C(2 π i/12), it
ought to be change to the prefect TSR transformation:

TSR (L,� α,� β) = TSR(L, 2 π j/30, 2 π[i/12 + n (t) j/60]), (13)

where the i and j will be the same odevity. It means that the Mn(t)TCNT360 will be
provided to the group symmetry included the element as shown in Eq. (13):

TSRn(t)M ( j, i) = {TSR(L, 2 π j/30, 2 π[i/12 + n (t) j/60]);
i and j with same odevity}. (14)

Now we analyse some important cyclical subgroups of the TSRn(t)M( j, i) in relation to
the Mn(t)TCNT360. For TSRn(t)M( j, i), the transformation cyclical subgroup which
do not refer to the MH-rectangle the carbon atoms being may be denoted as:

TSRn(t)M (2 j, 0) = {TSR(L, 4 π j/30, 4n(t)π j/60); j = 0, 1, . . . . . . , JM}
= {[TSR(L, 2 π /15, n(t)π /15)] j ; j = 0, 1, . . . . . . , JM}, (14a)

Such subgroup will include the rotation in relation to the α-angle. It is notable that
it is not only pure in relation to α-angle but also to β-angle rotation. As n(t) is even,
JM = 15 and TSRn(t)M(2 j, 0) ought to be 15 order subgroup. As n(t) is odd, JM = 30
and TSRn(t)M (2 j, 0) ought to be 30 order subgroup.

For TSRn(t)M( j, i), the transformation rotation cyclical subgroup which only refer
to the pure β-angle may be denoted as the TSRn(t)M(0, 2i), that is a six-order subgroup.
Such subgroup will be similar as Eq. (10b) in form, the group element will give rise
to the atoms in Mn(t)TCNT would be transferred between the various MH-rectangle,
and it is different from the usual rotation in point group, it is not the rotation along the
fixed axis but along the basic circle circumference. Through such rotation the α-angle
will remain unchanged. The JM-order cyclical subgroup of TSRn(t)M( j, i) which may
be referred to the change of α- and β-angle, simultaneously, as follows:

TSRn(t)M ( j, j) = {TSR(L, 2 π j/30, 2 π[ j/12 + jn(t)/60]); j = 0, 1, . . . . . . , JM − 1}
= {[TSR(L, 2 π /30, 2 π[1/12 + n(t)/60]) j ; j = 0, 1, . . . . . . , JM − 1}.

(14b)

As j = 30, the element of TSRn(t)M( j, j) will be the TSR(L,2π, 2 π[5/2 + n(t)/2]),
then � α = 2 π the α-angle rotate one circle, and � β = [5+n(t)]π the β-angle rotate
[5 + n(t)]/2 circles. It means that as n(t) is odd, the β-angle rotate integer circles,
TSRn(t)M( j, j) ought to be the 30-order cyclical subgroup (JM = 30), however as n(t)
is even, the β-angle rotate semi-integer, TSRn(t)M( j, j) would be the 60-order cyclical
subgroup (JM = 60). It is notable that where the dependence on the n(t)odevity will
be different for the subgroups TSRn(t)M( j, j) and TSRn(t)M(2 j, 0).

There are six topologic homeomorphous Möbius-strip bands in every Mn(t)

TCNT360 molecule and 60 carbon atoms included in each band. These bands may be
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Fig. 21 The Möbius-strip bands of Mn(t)TCNT360

provided with the similar shape elementary and may be related to each other through a
certain symmetry transformation. As shown in Fig. 20, it seems that these TCNT may
provided with the symmetry of usual point group Dn(t), but it may be not the perfect
symmetry [45,46]. According to the usual point group theory, the Mn(t)TCNT360
molecule my be provided the perfect symmetry of the point group D(n(0),n(t)). Owing
to where the n(0) = 15, for n(t) = 2, 3, 4, 5 and 6, they will be provided only with the
perfect symmetry of the point group C2, D3, C2, D5 and D3, respectively. It is appar-
ent that where every Möbius-strip band boundary will be formed from one and only
one HM-rectangle boundary. As n(t) is odd, the up- and down-boundary of the HM-
rectangle will joint to form a continuous boundary curve, as n(t) is even, the up-and
down-boundary of the HM-rectangle will be maintained as two separated boundary
curves. Each of six Möbius-strip bands for a certain Mn(t)TCNT360 molecules would
be similar as the topologic uniformity. As shown in Fig. 21, there are the Möbius-strip
bands in relation to the five kinds of Mn(t)TCNT360 shown in Fig. 20. Similarly, we
may get the figures in connection with the SALC-carbon atoms to replace the carbon
atomic pairs in structural unit, but there are omitted here.

By the way, the Möbius- and Hückel-strip bands of the TCNT as shown in Figs. 17,
19 and 21, may reflect the symmetry in relation to the α-angle rotation group TSR( j, j)
of these strip bands which formed from relative MH-rectangles. As there is only one
closed curve in boundary, the relative symmetry transformation group will be a TSR
cyclical transformation group, the closed curve run through carbon atonic pair number
may denoted the order of such TSR group. To make such graph, we may be using
one point to replace the carbon atom-pair (the structure unit). One set of the carbon
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atoms in a certain position of every structure unit may be constructed a SA-atom set in
relation to such symmetry transformation. Where there are two such SA-atom sets. As
there are two closed curves in boundary, the relative symmetry transformation group
ought to be not a single TSR cyclical transformation, but include a TSR cyclical
subgroup, where two closed curves may be corresponding to one cyclical subgroup
and its coset, respectively.

3.4 Symmetry and fuzzy symmetry of fractal-twisted Möbius-TCNT360

By means of torus orthogonal curvilinear coordinate, plane molecular follow the MH-
rectangle curl to form the Hückel or various Möbius-strip band as the α-angle rotate
half-cycle (180◦;π radian) and adjoint with the β-angle change n(t)180◦, the mole-
cular skeleton may recover, such molecule may be provided the relative symmetry.
Where the n(t) would be the integer (include the null, positive and negative inte-
ger). On the other hand, the n(t) may also be the fractional number, such molecule
may be called the fractal-twisted Möbius-TCNT. For example, the TCNT360 formed
from ZSWCNT(z-C360H12), as the CNT must only be twisted n f t (integer) times 60◦,
then it may be formed the Mn(t)TCNT360 = Mn( f t)/3TCNT360. As the n(ft) don’t
include the factor 3, the n(t) will no longer be the integer, such TCNT may be called
the fractal-twisted Möbius-TCNT. In principle, the in relation with the TSR symme-
try transformation which the fractal-twisted Möbius-TCNT360 may be also denoted
by Eq. (13), but where n(t) ought to be not the integral but the fraction value. The
relative TSR group would be the 90 order group. It may be but not always the 90
order cyclical group. It may be 90 order cyclical group but also may be a 90 order
symmetry including a 45 order cyclical subgroup. For Mn( f t)/3TCNT360, the relative
TSR group as:

TSRn(t)M( j, i) = {TSR(L, 2 π j/30, 2 π[i/12 + n( f t) j/180]);
i and j with same odevity}. (15)

As the n(ft) =1 and 2, they will respectively be:

TSR(1/3)M ( j, i) = {TSR(L, 2 π j/30, 2 π[i/12 + j/180]); i and j with same odevity}
(16a)

TSR(2/3)M ( j, i) = {TSR(L, 2 π j/30, 2 π[i/12 + j/90]); i and j with same odevity}.
(16b)

The cyclical subgroup with i = 0 will be:

TSR(1/3)M (2 j, 0) = {TSR(L, 4 π j/30, 4 π j/180); j = 0, 1, . . . . . . , 89}
= {[TSR(L, 2 π /15,π /45)] j ; j = 0, 1, . . . . . . , 89} (17a)

TSR(2/3)M (2 j, 0) = {TSR(L, 4 π j/30, 8 π j/180); j = 0, 1, . . . . . . , 44}
= {[TSR(L, 2 π /15, 2 π /45)] j ; j = 0, 1, . . . . . . , 44} (17b)
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Fig. 22 The space filling graph of the molecular skeleton structure in Mn( f t)/3TCNT360

As j = 45, the elements in Eqs. (17a) and (17b) ought to be the TSR(L, 6π,π) and
TSR(L, 6π, 2 π), respectively. The latter will be equivalence to the identity element,
but the former will not be. It means that the TSR(1/3)M(2 j, 0) will be the 90-order
cyclical group, but the TSR(2/3)M(2 j, 0) be the 45-order cyclical group. In relation to
i = j , the:

TSR(1/3)M ( j, j) = {TSR(L, 2 π j/30, 2 π[ j/12 + j/180]); j = 0, 1, . . . . . . , 44}
= {[TSR(L,π /15,π j[8/45]) j ; j = 0, 1, . . . . . . , 44} (18a)

TSR(2/3)M ( j, j) = {TSR(L, 2 π j/30, 2 π[ j/12 + j/90]); j = 0, 1, . . . . . . , 89}
= {[TSR(L, 2 π /15, [17/90] π)] j ; j = 0, 1, . . . . . . , 89}. (18b)

It means that the TSR(1/3)M( j, j) is the 45-order cyclical group, but the TSR(2/3)M
( j, j) is the 90-order cyclical group.

Above such TSR(1/3)M and TSR(2/3)M cyclical subgroups may be provided with
various orders. It owing to that these two groups refer to three MH-rectangles of
M1/3TCNT360 and M2/3TCNT360, respectively, and to form the relative Möbius-
strip bands with various topologic characteristic. The Fig. 22 shows that the space
filling graphs of the skeleton structure in M1/3TCNT360 and M2/3TCNT360. The
various color balls may denote the carbon atoms in the boundary of various MH-
rectangle. Where one Möbius-strip band may be composed with three MH-rectangles,
every molecule may include two Möbius-strip bands. The Möbius-strip bands of such
two molecules would be provided the various topological characteristic. Now we
analyse their Möbius-strip band, respectively.

For the M1/3TCNT360 molecule, there are two Möbius-strip band, every Möbius-
strip band will be formed by means of three MH-rectangle, they include the carbon
atoms with the serial number m in Fig. 1 being odd or even respectively, they are
topology homeomorphous. Each Möbius-strip band may include 180 carbon atoms,
every two carbon atoms compose a structure unit, corresponding to one 90 order
TSR cyclical group. As shown in Fig. 23, there is the boundary of such Möbius-strip
band. Where the Fig. 23a–c may show the relative top view, side view and oblique
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Fig. 23 The boundary of Möbius-strip band in M1/3TCNT360. (a) top view, (b) side view, (c) oblique
view, (a0) top view (with SALC-carbon atom)

view, respectively, meanwhile the Fig. 23a0 will show also the top view but using the
SALC-atoms to replace the carbon atomic pair in structural unit.

It is notable that there are the continuous closed curves in three-dimensional space.
Three different color curve section and the through globules are denoted that originated
from different MH-rectangles boundary. Each two closer atoms compose one structure
unit and there are 180 carbon atoms to compose 90 structure units. The mid red
globules may joint to form the basic circle. As every structure unit along Möbius-strip
band boundary move to next structure unit, that is corresponding to one time of TSR
symmetry transformation and to compose the 90-order cyclical group. The Möbius-
strip band boundary will be around the basic circle, the up- and down-boundary of a
certain MH-rectangle may be through the plane of basic circle. The up- and down-
boundary of a certain MH-rectangle they ought to not joint in the Möbius-strip band.

As for the M2/3TCNT360 molecule, there are also two Möbius-strip band, every
Möbius-strip bandwill be formed by means of three MH-rectangle, they include the
carbon atoms with the serial number m in Fig. 1 being odd or even respectively, they are
topology homeomorphous. Each Möbius-strip band may include 180 carbon atoms,
every two carbon atoms compose a structure unit, corresponding to one 90 order TSR
group, but it is not one 90 order cyclical group. Though such two Möbius-strip bands in
M2/3TCNT360 are topologic homeomorphous each other, but they are not topologic
homeomorphous with the Möbius-strip bands in M1/3TCNT360. As shown in Fig. 24,
there is the boundary of such Möbius-strip band. Where the Fig. 24a–c may show the
relative top view, side view and oblique view, respectively, meanwhile the Fig. 24a0
will show also the top view but using the SALC-atoms to replace the carbon atomic
pair in structural unit.
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Fig. 24 The boundary of Möbius-strip band in M2/3TCNT360 (a) top view, (b) side view, (c) oblique
view, (a0) top view (with SALC-carbon atom)

It is notable that there is not a continuous closed curve in three-dimensional space,
but there is a catenane composed by means of two complex closed curves. Above
closed curves are formed by among the up- or down-boundary of three MH-rectangle.
Three different color curve section and the through globules are denoted that originated
from different MH-rectangles boundary. Each two closer atoms compose one structure
unit and there are 90 carbon atoms to compose 45 structure units in one closed curve,
and correspond to one 45-order cyclical subgroup and one relative coset. The mid red
globules may joint to form the basic circle. Anyone closed curve of the Möbius-strip
band boundary may be around the basic circle and through the plane of basic circle.

By the way, as shown in the figures A0 of above Figs. 17, 18, 23 and 24 the SALC-
atoms linked by using Hückel- or Möbius-strip boundary, they seem as two or one
rosary bunch, and may reflect the relative TSR group symmetry.

As for the difference between the Möbius-strip bands of these TCNT, there are
two similar boundary closed curves for M2/3TCNT360 and only one closed curve for
M1/3TCNT360. Owing to both two closed curves of M2/3TCNT may pass through
the basic circle plane, the Fig. 24 not clear. We make the top view graph with one of
these two closed curves in the Fig. 24a, a0 (as shown in Fig. 25a and b, respectively).

For such different characteristic of the Möbius-strip band of the M2/3TCNT360
and M1/3TCNT360, it is easy to understand. The Möbius-strip bands of both these
two molecules are formed from MH-rectangles, the dihedral angle for these rectangles
will be 60◦, by using the torus curvilinear coordinate system, the points with the same
α-value in various MH-rectangles, their β-value would be differ 60◦. For the points in
Möbius-strip band boundary of M1/3TCNT360, they forward lead the α-value change
360◦ and the relative structure units remove 15 times, meanwhile the β-value change
60◦, and then arrive at another MH-rectangle boundary. When and only when through
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Fig. 25 One closed curve (top view) of Möbius-strip band boundary in M2/3TCNT360. (a) the carbon
atomic pair for each structural unit, (b) one SALC-carbon atom for each structural unit

six times such variation include α-value change with six times 360◦ and β-value change
with one time 360◦, the point in Möbius-strip band may through all of the boundary
which ought to be formed from the all up- and down-boundary of three MH-rectangles
and return to the original position. That is one 90-order cyclical group. On the other
hand, for the points in Möbius-strip band boundary of M2/3TCNT360, they forward
lead the α-value change 360◦ and the relative structure units remove 15 times, mean-
while the β-value change 120◦, and then arrive at another MH-rectangle boundary.
When through three times such variation include α-value change with six times 360◦
and β-value change with one time 360◦, the point in Möbius-strip band may through
the boundary which ought to be formed from the up- or down-boundary of three
MH-rectangles and return to the original position. That is one 45-order cyclical group.

Although here we only analyse the TCNT360, it is no difficult to other carbon
nanotube, TCNT, by the similar way. Above TCNT360 are based on the ZSWCNT(z-
C360H12) which would be provided with the Drh symmetry. The ZSWCNT shown in
Fig. 1, as the maximum value (N) of the serial number n is even number, the ZSWCNT
will be connected the relative carbon atoms of the CNT tube sides with same odevity of
the serial number m to compose the TCNT, but as the maximum value (N) of the serial
number n is odd number, the ZSWCNT will be connected the relative carbon atoms
of the CNT tube sides with different odevity of the serial number m to compose the
TCNT. For the latter cases, the formed TCNT can not be the Hückel-type (HTCNT),
it must be the fractal twisted Mn( f t)TCNT. Such ZSWCNT which would be provide
with the point group Drd symmetry, the relative Möbius-strip band may be formed
from more MH-rectangle.

3.5 Symmetry and fuzzy symmetry of Hetero-TCNT

The torus carbon nanotube (TCNT) would be the pure carbon molecule. As some
carbon atoms among the TCNT are substituted by non-carbon atoms, it may be
called the hetero-torus carbon nanotube. Now we consider the hetero-TCNT360,
as shown in Fig. 2, the hetero-atoms (X and Y) replace some carbon atoms of the
ZSWCNT(z-C360H12), two sides of such hetero-CNT combined to form the hetero-
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Fig. 26 The molecular skeletons of hetero-HTCNT360 and hetero-HTCNT360-2 and the hetero-atoms
among them. (a) hetero-HTCNT360, (b) the hetero-atoms in hetero-HTCNT360, (c) hetero-HTCNT360-2,
(d) the hetero-atoms in hetero-HTCNT360-2

TCNT360, with the formula as C300X30Y30. by means of the Hückel model, we may
get the hetero-HTCNT as shown in Fig. 26a. For example, the X and Y may be the B
and N atoms, respectively. It is notable that the goubles with various denoted various
element atoms not all the carbon atoms. Where the X and Y atoms distribute in the
TCNT wall with the helix form, using the torus orthogonal curvilinear coordinate sys-
tem to analyse the distribution curve as the α-angle changes one circle (2 π radian or
360◦), the β-angle will be change two-and-half circles(5 π), therefore the helix form
distribution curve would be discontinuous, as shown in Fig. 26b. As above helix form
distribution curve the α-angle changes two circles (the relative molecule denoted as
hetero-HTCNT360-2), the β-angle will be change five circles, the relative curve may be
all continuous. Such hetero-HTCNT360-2 molecule and the hetero-atoms among such
molecule are shown in Fig. 26c, d, respectively. Owing to above dis-continuity destroy
the symmetry of TCNT, as shown in Fig. 26a the hetero-HTCNT360 will be provided
without the perfect symmetry in relation to the torus group or TSR group, but the
hetero-HTCNT360-2 as shown in Fig. 26c will be with the symmetry of TSRH( j, j)
group, as Eq. (10c) denoted. As we want to eliminate such dis-continuity when α-angle
change one circle, by means of Eq. (14b) the TSRn(t)M( j, j) requests that the n(t)
must odd number twisted HTCHT, the relative Mn(t)TCNT may be realized.
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Fig. 27 Hetero-Mn(t)TCNT360 (a) and the hetero-atoms among them (b). (a1) hetero-MTCNT360,
(b1) hetero-atoms in hetero-MTCNT360, (a2) hetero-M−1TCNT360, (b2) hetero-atoms in hetero-
M−1TCNT360, (a3) hetero-M3TCNT360, (b3) hetero-atoms in hetero-M3TCNT360, (a4) hetero-
M−3TCNT360, (b4) hetero-atoms in M−3TCNT360
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As mentioned above, for eliminate such discontinuous it is odd number multi-
twisted Möbius form to compose. Now we examine cases for along positive or negative
direction with once or triple twisted. As the pure carbon TCNT the same multi-twisted
with the opposite directions, they would be the optical enantiomer, however for the
hetero-TCNT it will be more complex. For the once twisted MTCNT as the α-angle
rotated one circle the β-angle will be twisted π radian and for hetero-HTCNT360
the hetero-atoms distribution as the α-angle revolve one circle the β-angle will be
twisted 5π, therefore for the hetero-MTCNT as the α-angle revolve one circle the
β-angle will be twisted 6π radian (three circles). Such hetero-MTCNT and the helix
distribution of hetero-atom among may be shown in Fig. 27a1, b1, respectively. For
hetero-M−1TCNT with along negative direction once twisted as the α-angle revolve
one circle the β-angle will be twisted 4 π radian (two circles). Such hetero-MTCNT
and the helix distribution of hetero-atom among may be shown in Fig. 27a2, b2,
respectively. Similarly, for the relative hetero-M3TCNT and hetero-M−3 TCNT we
may get the Fig. 27a3, b3, a4 and b4. According to Eq. (14b) as n(t) equal to the odd
number: 3, 1, −1 and −3, for α-angle change every circle the β-angle will follow
twisted with the 4, 3, 2 and 1 circle, respectively, agree with the Fig. 27.

Such positive or negative directional twisted for the helical-structure of molecu-
lar skeleton may produce some important affect in molecular biology research. The
relative title, e.g. the DNA topology, we will examine them in subsequent works.

Of course, for the various hetero-CNT to form the TCNT, as the α-angle change
one circle the intersect value of β-angle may be not the integral multiples of π, and it
may be in connection to the fractal twisted Möbius-model combination to eliminate
discontinuity. The processing way will be the similar as above in principle. As mention
above, as the CNT to form the TCNT, the primary fuzzy CSR symmetry may transform
to a certain perfect TSR symmetry, for above hetero-TCNT it must be also satisfied
the continuity condition of hetero-atom helix-distribution.

It is evident that though the TCNT composed by hexatomic ring mainly will be
on the cards, but only by hexatomic ring would be difficulty. Owing to we examine
the TCNT with the purpose of analyse the TSR symmetry that is suitable. Although
the TCNT with such TSR symmetry may be not easy, but some torus non-carbon
nano-tube [51] had been reported for which may be provided such symmetry. In
especial, as more flexibility and weak bonds [52] included, such TSR symmetry and
fuzzy symmetry may be appeared more possibility. In this paper using the TCNT as
the example, we analyse the TSR symmetry and the relative multi- or fractal-twisted
Möbius tubular molecular, such helix-structure molecules really exist in nature, but
more complex than TCNT.

4 Conclusion

The carbon nanotube (CNT) carries a structure that is an approximate cylinder, and
it may be analysed by fuzzy cylindrical group. For such fuzzy cylindrical group,
the fuzzy higher-(>2)-fold screw rotation transformation and the related symmetry
need to be examined, and this paper focuses on such symmetry analysis. Since the
new millennium, the torus carbon nanotube (TCNT) became a hot topic. Such TCNT
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with torus group symmetry possess some important application aspects in molecular
science. On the symmetry and fuzzy symmetry of cylinder and torus CNT, we get
some interesting results as the following:

1. For the single-walled carbon nanotube (SWCNT), there is an r-fold rotation axis,
Cr, along central shaft, which is usually set as the Z-direction and analyzed by
using the cylindrical coordinate system. According to general point group theory,
the SWCNT molecules often possess Drh or Drd symmetry. We divide the ele-
ments of D2rh point group into four subsets according to the intersection-union
logic relationship among these point groups and analyse the related point sym-
metry and fuzzy point symmetry of SWCNT. As for the fuzzy space symmetry,
SWCNT may be considered as the fuzzy cylindrical group, and for the corre-
sponding symmetry transformation we mainly investigate the cylindrical screw
rotation transformation (CSR), especially the higher (>2)-fold CSR, besides the
point symmetry transformation, Generally speaking, CSR is the combination of the
translation transformation and the rotation transformation. If the translation dis-
tance is null, the CSR will be the pure rotation transformation; and if the rotation
angle is zero, the CSR will be the pure translation transformation.
For the zigzag SWCNT (ZSWCNT), the period length of the relative translation
transformation along the Z-direction is triple of CC bond length (lcc). The trans-
lation length included in CSR is the integer multiples of 1.5lcc, and the rotation
angle is integer multiples of 2 π /(M−1), where (M−1) represents the number of
carbon atoms for each layer. The CSR transformation is the product of above trans-
formation T(1.5 jlcc) and rotation transformation C(2 π i/[M − 1]), where both
i and j are integers with the same odevity. For the ZSWCNT with finite length,
we could analyse the fuzzy symmetry of such molecular skeleton. For ZSWCNT
with the formula of CN(M−1)H(M−1) (shown in Fig. 1b), according to CSR(i, j)
transformation, the membership function of such molecular skeleton would be
independent of i and equal to [(N − j)ZC + ZH ]/[NZC + ZH]. If we ignore the
small deviation of ZH, it will be simplified as 1 − ( j /N). When the range of all
translation allowed (represented by N) is more than 10-fold of the distance of each
translation (represented by j), the relative membership function would be more
than 0.9, and the fuzzy space group symmetry could be seen as perfect. That is the
same as our previous work [32,33]. For ASWCNT, we may get the similar result.

2. The SWCNT molecular skeleton carries the cylindrical group symmetry. To
analyse such molecules, it is appropriate to use the cylindrical coordinate sys-
tem. The corresponding MO belongs to a certain pure irreducible representation,
but the SA-AO set component in a certain MO may be not unique and hence it is
difficult to isolate the pure π-MO. Analysing the MO energy level will base on
all MOs without dividing them into σ- and π-MO. Meanwhile the serial number
of MO (denoted as J : MO and NBMO energy levels are separated by the order J)
will be replaced by the relative serial number (denoted as J/Nc:Nc is the number of
atoms in the SWCNT wall). For the ZSWCNTs with same pipe diameter (i.e. the
same thickness) and different lengths, the distribution graph of MO energy versus
relative serial number will roughly appear on an identical curve. Even when some
of carbon atoms are replaced by heter-atoms the deviation will not deviate too
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much. However, for the SWCNT with different pipe diameter, the deviation may
be somewhat evident.

3. Although the MO in SWCNT would belong to the pure irreducible representation,
the SA-AO set component in a certain MO may be not unique. By the cylindrical
coordinate system to analyse zigzag- or armchair-SWCNT with same pipe diam-
eter and different lengths, the distribution graphs of certain SA-AO (the 1S-, 2S-,
2Pz-, 2Pr-, 2Pt- of carbon atom and 1S-AO of hydrogen atom) set component ver-
sus the relative serial number will be similar, which is true especially to the MOs
near the frontier MO which are usually considered as the π-MOs. Although it is
not composed only by the Pr-AOs, the components of 2Pr will weigh more (may
less 0.5). The distribution curves of the component of same kind SWCNT versus
the relative serial number will be similar too.

4. For the fuzzy symmetry of the SWCNT, we mainly focus on analysing the relative
cylindrical screw rotation (CSR) transformation symmetry. CSR may be denoted as
the product of translation (T) and rotation (C). To SWCNT, the imperfect symmetry
of CSR is usually caused by the imperfection of translation (T). The rotation
(C) of the SWCNT skeleton may carry the perfect symmetry, but the SWCNT
MO may belong to a two dimensional irreducible representation with higher-fold
rotation (C). As for the single MOs that belong to two-dimensionality, the relative
membership function may be less than one. It is not caused by the imperfect
symmetry. On the other hand, owing to the molecular finiteness, the symmetry
related to translation (T) would be imperfect. Both the skeleton and MO would
be imperfect and the relative membership function would be less than one. The
membership function related to CSR, which is the product of C and T, would be less
than one in general. For the SWCNT molecular skeleton and the MOs that belong to
the one-dimensional irreducible representation, the membership functions related
to CSR with the same T but different C would be the same, however, for the
single MO which belongs to the two-dimensional irreducible representation such
membership functions may be somewhat different. For the MOs of ZSWCNTs
with different lengths, the distributions of CSR membership function versus the
relative serial number are interrelated.

5. Recently, the theory of torus carbon nanotube (TCNT) has attracted the interest of
some chemists. Though it seems not easy to obtain TCNTs with ideal structures,
the symmetry and fuzzy symmetry of the torus group and torus screw rotation,
which is intrinsic to TCNT, indeed exist in nature. Thus we take TCNT as a
typical example and provide foundation for further study of other relative systems.
Similar to that the plane rectangle (denoted as MH rectangle) could curl to form
the Hückel- or Möbius-strip band, the cylindrical SWCNT is composed of multi-
MH rectangle. As SWCNT forms TCNT, the fuzzy CSR symmetry will transform
into certain perfect TSR symmetry. The multi-MH rectangle in SWCNT will be
combined to form multi-Hückel- or Möbius-strip band in a certain way. Meanwhile
the intersecting line of the multi-rectangle, Z-axis, will transform to the common
basic circle of those strip bands.

6. As SWCNT curls to form TCNT, one of the MH rectangles forms a Hückel-strip
band, and all of the other MH rectangles will also form the Hückel-strip band. The
set of all those MH rectangles forming the Hückel-strip band becomes the Hückel-
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strip tube. As SWCNT curls form the TCNT, one of the MH rectangles forms an
n(t)-fold twisted Möbius-strip band, and all of the other MH rectangles will also
form n(t)-fold Möbius-strip bands. The set of all the MH rectangles forming the
n(t)-Möbius-strip band set will be called n(t)-Möbius-strip tube. Such strip bands
are topologically equivalent to the identity strip tube in the sense of structure.
All of the Hückel-strip bands and even-fold twisted Möbius-strip bands include
two closed curves (could be a catenane) as the boundaries. The odd-fold twisted
Möbius-strip bands include only one closed curve (could be a knot) as the boundary.
Such closed curve boundaries reflect the symmetrical characteristics of the torus
group related to the strip bands, while the closed curves correspond to a cyclical
group or a cyclical subgroup and its coset. The number of carbon atom pairs (the
structure unit) is the order of the corresponding group, subgroup, or coset.

7. As SWCNT curls to form the TCNT, it also could form Möbius-strip tube by fractal
twisting, among which a single Möbius-strip band might be formed by multi-MH
rectangle while any single MH rectangle only forms into one Möbius-strip band.
The corresponding order of the related TSR group may be multi-fold of that of the
related MH-rectangle. Such Möbius-strip band may be bounded with one or two
closed curves, and would not be drawn in Euclidean space easily.

8. As the hetero-SWCNT with a helical-structure distribution curls form the related
torus hetero-CNT, a certain twisted way (in particular, the fractal twisted way)
may often be necessary to maintain the continuity in tube side of the Möbius-strip
tube. Such helical-structure substitute distribution and the twisted way will be
interacted and make the helical-structure distribution more relax or less stiff. The
related phenomena appear in some molecular biologic processes.
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